2024
2024
-
Record 301 of
Title:Effective correction of dissolved organic carbon interference in nitrate detection using ultraviolet spectroscopy combined with the equivalent concentration offset method
Author Full Names:Dong, Jing; Tang, Junwu; Wu, Guojun; Xin, Yu; Li, Ruizhuo; Li, YahuiSource Title:RSC ADVANCESLanguage:EnglishDocument Type:ArticleKeywords Plus:DOC; WATER; CODAbstract:Nitrate contamination in water sources poses a substantial environmental and health risk. However, accurate detection of nitrate in water, particularly in the presence of dissolved organic carbon (DOC) interference, remains a significant analytical challenge. This study investigates a novel approach for the reliable detection of nitrate in water samples with varying levels of DOC interference based on the equivalent concentration offset method. The characteristic wavelengths of DOC were determined based on the first-order derivatives, and a nitrate concentration prediction model based on partial least squares (PLS) was established using the absorption spectra of nitrate solutions. Subsequently, the absorption spectra of the nitrate solutions were subtracted from that of the nitrate-DOC mixed solutions to obtain the difference spectra. These difference spectra were introduced into the nitrate prediction model to calculate the equivalent concentration offset values caused by DOC. Finally, a DOC interference correction model was established based on a binary linear regression between the absorbances at the DOC characteristic wavelengths and the DOC-induced equivalent concentration offset values of nitrate. Additionally, a modeling wavelength selection algorithm based on a sliding window was proposed to ensure the accuracy of the nitrate concentration prediction model and the equivalent concentration offset model. The experimental results demonstrated that by correcting the DOC-induced offsets, the relative error of nitrate prediction was reduced from 94.44% to 3.36%, and the root mean square error of prediction was reduced from 1.6108 mg L-1 to 0.1037 mg L-1, which is a significant correction effect. The proposed method applied to predict nitrate concentrations in samples from two different water sources shows a certain degree of comparability with the standard method. It proves that this method can effectively correct the deviations in nitrate measurements caused by DOC and improve the accuracy of nitrate measurement. A simple and rapid method for DOC interference correction based on an equivalent concentration offset method was proposed to address the challenging issue of DOC interference in nitrate detection in aquatic environments.Addresses:[Dong, Jing; Tang, Junwu; Wu, Guojun; Li, Ruizhuo] Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China; [Dong, Jing; Li, Ruizhuo] Univ Chinese Acad Sci, Beijing 100049, Peoples R China; [Tang, Junwu; Wu, Guojun; Li, Yahui] Laoshan Lab, Qingdao 266237, Peoples R China; [Xin, Yu] Ocean Univ China, Qingdao 266100, Peoples R ChinaAffiliations:Chinese Academy of Sciences; Xi'an Institute of Optics & Precision Mechanics, CAS; Chinese Academy of Sciences; University of Chinese Academy of Sciences, CAS; Laoshan Laboratory; Ocean University of ChinaPublication Year:2024Volume:14Issue:8Start Page:5370End Page:5379DOI Link:http://dx.doi.org/10.1039/d3ra08000e数据库ID(收录号):WOS:001160556000001 -
Record 302 of
Title:Multiple marine algae identification based on three-dimensional fluorescence spectroscopy and multi-label convolutional neural network
Author Full Names:Li, Ruizhuo; Gao, Limin; Wu, Guojun; Dong, JingSource Title:SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPYLanguage:EnglishDocument Type:ArticleKeywords Plus:FEATURE-EXTRACTION; PHYTOPLANKTON; DISCRIMINATION; SPECTRA; BLOOMS; HEALTHAbstract:Accurate identification of algal populations plays a pivotal role in monitoring seawater quality. Fluorescencebased techniques are effective tools for quickly identifying different algae. However, multiple coexisting algae and their similar photosynthetic pigments can constrain the efficacy of fluorescence methods. This study introduces a multi -label classification model that combines a specific Excitation -Emission matric convolutional neural network (EEM-CNN) with three-dimensional (3D) fluorescence spectroscopy to detect single and mixed algal samples. Spectral data can be input directly into the model without transforming into images. Rectangular convolutional kernels and double convolutional layers are applied to enhance the extraction of balanced and comprehensive spectral features for accurate classification. A dataset comprising 3D fluorescence spectra from eight distinct algae species representing six different algal classes was obtained, preprocessed, and augmented to create input data for the classification model. The classification model was trained and validated using 4448 sets of test samples and 60 sets of test samples, resulting in an accuracy of 0.883 and an F1 score of 0.925. This model exhibited the highest recognition accuracy in both single and mixed algae samples, outperforming comparative methods such as ML-kNN and N-PLS-DA. Furthermore, the classification results were extended to three different algae species and mixed samples of skeletonema costatum to assess the impact of spectral similarity on multilabel classification performance. The developed classification models demonstrated robust performance across samples with varying concentrations and growth stages, highlighting CNN's potential as a promising tool for the precise identification of marine algae.Addresses:[Li, Ruizhuo; Gao, Limin; Wu, Guojun; Dong, Jing] Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China; [Li, Ruizhuo; Dong, Jing] Univ Chinese Acad Sci, Coll Photoelect, Beijing 100049, Peoples R China; [Wu, Guojun] Laoshan Lab, Qingdao 266237, Shandong, Peoples R ChinaAffiliations:Chinese Academy of Sciences; Xi'an Institute of Optics & Precision Mechanics, CAS; Chinese Academy of Sciences; University of Chinese Academy of Sciences, CAS; Laoshan LaboratoryPublication Year:2024Volume:311Article Number:123938DOI Link:http://dx.doi.org/10.1016/j.saa.2024.123938数据库ID(收录号):WOS:001180327800001 -
Record 303 of
Title:Entanglement Generation of Polar Molecules via Deep Reinforcement Learning
Author Full Names:Zhang, Zuo-Yuan; Sun, Zhaoxi; Duan, Tao; Ding, Yi-Kai; Huang, Xinning; Liu, Jin-MingSource Title:JOURNAL OF CHEMICAL THEORY AND COMPUTATIONLanguage:EnglishDocument Type:ArticleAbstract:Polar molecules are a promising platform for achieving scalable quantum information processing because of their long-range electric dipole-dipole interactions. Here, we take the coupled ultracold CaF molecules in an external electric field with gradient as qubits and concentrate on the creation of intermolecular entanglement with the method of deep reinforcement learning (RL). After sufficient training episodes, the educated RL agents can discover optimal time-dependent control fields that steer the molecular systems from separate states to two-qubit and three-qubit entangled states with high fidelities. We analyze the fidelities and the negativities (characterizing entanglement) of the generated states as a function of training episodes. Moreover, we present the population dynamics of the molecular systems under the influence of control fields discovered by the agents. Compared with the schemes for creating molecular entangled states based on optimal control theory, some conditions (e.g., molecular spacing and electric field gradient) adopted in this work are more feasible in the experiment. Our results demonstrate the potential of machine learning to effectively solve quantum control problems in polar molecular systems.Addresses:[Zhang, Zuo-Yuan; Huang, Xinning] Yangzhou Univ, Sch Phys Sci & Technol, Yangzhou 225009, Peoples R China; [Sun, Zhaoxi] Changping Lab, Beijing 102206, Peoples R China; [Duan, Tao] Xian Inst Opt & Precis Mech CAS, State Key Lab Transient Opt & Photon, Xian 710119, Peoples R China; [Ding, Yi-Kai; Liu, Jin-Ming] East China Normal Univ, Sch Phys & Elect Sci, State Key Lab Precis Spect, Shanghai 200241, Peoples R ChinaAffiliations:Yangzhou University; Changping Laboratory; State Key Laboratory of Transient Optics & Photonics; Chinese Academy of Sciences; Xi'an Institute of Optics & Precision Mechanics, CAS; East China Normal UniversityPublication Year:2024Volume:20Issue:5Start Page:1811End Page:1820DOI Link:http://dx.doi.org/10.1021/acs.jctc.3c01214数据库ID(收录号):WOS:001163364800001 -
Record 304 of
Title:Three-dimensional Bose-Einstein gap solitons in optical lattices with fractional diffraction
Author Full Names:Chen, Zhiming; Liu, Xiuye; Xie, Hongqiang; Zeng, JianhuaSource Title:CHAOS SOLITONS & FRACTALSLanguage:EnglishDocument Type:ArticleKeywords Plus:SCHRODINGER-EQUATION; DYNAMICSAbstract:Compared with low-dimensional solitons that are widely studied in various realizable nonlinear physical systems, the properties and dynamics of three-dimensional solitons and vortices have not been well disclosed yet. Using numerical simulations and theoretical analysis, we here address the existence, structural property, and dynamics of three-dimensional gap solitons and vortices (with topological charge s = 1) of Bose-Einstein condensates moving by Levy flights (characterized by fractional diffraction operators, Levy index 1 < alpha <= 2) in optical lattices. We stress that previously the localized modes have only been revealed in low-dimensional nonlinear fractional systems in one- and two-dimensional periodic potentials, our study presented here thus drives the associated nonlinear-wave research into three-dimensional configurations. The three-dimensional optical lattices exhibit a nontrivial wide band-gap feature, within which the matter-wave localized gap modes could be excited. The stability and instability regions of both three-dimensional gap modes are obtained via direct perturbed simulations, shedding light on multidimensional soliton physics in nonlinear fractional systems with periodic potentials.Addresses:[Chen, Zhiming; Xie, Hongqiang] East China Univ Technol, Sch Sci, Nanchang 330013, Peoples R China; [Chen, Zhiming; Liu, Xiuye; Zeng, Jianhua] Chinese Acad Sci, Xian Inst Opt & Precis Mech, Ctr Attosecond Sci & Technol, State Key Lab Transient Opt & Photon, Xian 710119, Peoples R China; [Zeng, Jianhua] Univ Chinese Acad Sci, Beijing 100049, Peoples R China; [Zeng, Jianhua] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R ChinaAffiliations:East China University of Technology; Chinese Academy of Sciences; Xi'an Institute of Optics & Precision Mechanics, CAS; State Key Laboratory of Transient Optics & Photonics; Chinese Academy of Sciences; University of Chinese Academy of Sciences, CAS; Shanxi UniversityPublication Year:2024Volume:180Article Number:114558DOI Link:http://dx.doi.org/10.1016/j.chaos.2024.114558数据库ID(收录号):WOS:001179331500001 -
Record 305 of
Title:Room-temperature MoTe2/InSb heterostructure large-area terahertz detector
Author Full Names:Wang, Jiatong; Zhang, Min; Zhou, Zhiwen; Li, Ling; Song, Qi; Yan, PeiguangSource Title:INFRARED PHYSICS & TECHNOLOGYLanguage:EnglishDocument Type:ArticleKeywords Plus:HIGH-RESPONSIVITY; BROAD-BAND; PHOTORESPONSIVITY; PHOTODETECTORS; TECHNOLOGIES; DEPOSITION; SCATTERING; MOBILITY; RAMANAbstract:As a building block for terahertz system, terahertz detector is expected to achieve high-performance, roomtemperature, low-cost and large-area detection available. However, the state-of-the-art technologies still suffer from various drawbacks. This paper presents a MoTe2/InSb heterostructure large-area terahertz detector. With the photoactive region of heterostructure, carriers are allowed to assemble within the interface due to the carrier mobility difference, resulting in detection sensitivity improvement. The structures and bonding of MoTe2/InSb heterostructure were characterized by Raman spectroscopy. Besides, large-scale interdigital electrodes with subwavelength spacing are employed at the bottom of photoactive region, which contrasts with normal electrodes coated on both sides of the active layer, endowing a large effective detection area of 2 mm x 6.65 mm with the detector. Subwavelength electrodes spacing not only facilitates the directional migration of carriers, but also induces electromagnetic induced well (EIW) effects to obtain extraordinary performance. As a result, the detector achieves a noise equivalent power (NEP) of 2.66 pW Hz-1/2 and a detectivity (D*) of 0.53 x 1012 cm Hz1/ 2 W-1 under 0.1 THz radiation at room temperature. The proposed high-performance terahertz detector exhibits remarkable prospects in varieties of applications.Addresses:[Wang, Jiatong; Zhang, Min; Zhou, Zhiwen; Li, Ling; Yan, Peiguang] Shenzhen Univ, Coll Phys & Optoelect Engn, Key Lab Optoelect Dev Minist Educ & Guangdong Prov, State Key Lab Radio Frequency Heterogeneous Integr, Shenzhen 518060, Peoples R China; [Song, Qi] Liaocheng Univ, Sch Phys Sci & Informat Technol, Liaocheng 252059, Peoples R China; [Zhang, Min] State Key Lab Transient Opt & Photon, Xian 710119, Peoples R ChinaAffiliations:Shenzhen University; Liaocheng University; Chinese Academy of Sciences; State Key Laboratory of Transient Optics & PhotonicsPublication Year:2024Volume:137Article Number:105190DOI Link:http://dx.doi.org/10.1016/j.infrared.2024.105190数据库ID(收录号):WOS:001179671400001 -
Record 306 of
Title:STCF conceptual design report (Volume 1): Physics & detector
Author Full Names:Achasov, M.; Ai, X. C.; An, L. P.; Aliberti, R.; An, Q.; Bai, X. Z.; Bai, Y.; Bakina, O.; Barnyakov, A.; Blinov, V.; Bobrovnikov, V.; Bodrov, D.; Bogomyagkov, A.; Bondar, A.; Boyko, I.; Bu, Z. H.; Cai, F. M.; Cai, H.; Cao, J. J.; Cao, Q. H.; Cao, X.; Cao, Z.; Chang, Q.; Chao, K. T.; Chen, D. Y.; Chen, H.; Chen, H. X.; Chen, J. F.; Chen, K.; Chen, L. L.; Chen, P.; Chen, S. L.; Chen, S. M.; Chen, S.; Chen, S. P.; Chen, W.; Chen, X.; Chen, X. F.; Chen, X. R.; Chen, Y.; Chen, Y. Q.; Cheng, H. Y.; Cheng, J.; Cheng, S.; Cheng, T. G.; Dai, J. P.; Dai, L. Y.; Dai, X. C.; Dedovich, D.; Denig, A.; Denisenko, I.; Dias, J. M.; Ding, D. Z.; Dong, L. Y.; Dong, W. H.; Druzhinin, V.; Du, D. S.; Du, Y. J.; Du, Z. G.; Duan, L. M.; Epifanov, D.; Fan, Y. L.; Fang, S. S.; Fang, Z. J.; Fedotovich, G.; Feng, C. Q.; Feng, X.; Feng, Y. T.; Fu, J. L.; Gao, J.; Gao, Y. N.; Ge, P. S.; Geng, C. Q.; Geng, L. S.; Gilman, A.; Gong, L.; Gong, T.; Gou, B.; Gradl, W.; Gu, J. L.; Guevara, A.; Gui, L. C.; Guo, A. Q.; Guo, F. K.; Guo, J. C.; Guo, J.; Guo, Y. P.; Guo, Z. H.; Guskov, A.; Han, K. L.; Han, L.; Han, M.; Hao, X. Q.; He, J. B.; He, S. Q.; He, X. G.; He, Y. L.; He, Z. B.; Heng, Z. X.; Hou, B. L.; Hou, T. J.; Hou, Y. R.; Hu, C. Y.; Hu, H. M.; Hu, K.; Hu, R. J.; Hu, W. H.; Hu, X. H.; Hu, Y. C.; Hua, J.; Huang, G. S.; Huang, J. S.; Huang, M.; Huang, Q. Y.; Huang, W. Q.; Huang, X. T.; Huang, X. J.; Huang, Y. B.; Huang, Y. S.; Husken, N.; Ivanov, V.; Ji, Q. P.; Jia, J. J.; Jia, S.; Jia, Z. K.; Jiang, H. B.; Jiang, J.; Jiang, S. Z.; Jiao, J. B.; Jiao, Z.; Jing, H. J.; Kang, X. L.; Kang, X. S.; Ke, B. C.; Kenzie, M.; Khoukaz, A.; Koop, I.; Kravchenko, E.; Kuzmin, A.; Lei, Y.; Levichev, E.; Li, C. H.; Li, C.; Li, D. Y.; Li, F.; Li, G.; Li, G.; Li, H. B.; Li, H.; Li, H. N.; Li, H. J.; Li, H. L.; Li, J. M.; Li, J.; Li, L.; Li, L.; Li, L. Y.; Li, N.; Li, P. R.; Li, R. H.; Li, S.; Li, T.; Li, W. J.; Li, X.; Li, X. H.; Li, X. Q.; Li, X. H.; Li, Y.; Li, Y. Y.; Li, Z. J.; Liang, H.; Liang, J. H.; Liang, Y. T.; Liao, G. R.; Liao, L. Z.; Liao, Y.; Lin, C. X.; Lin, D. X.; Lin, X. S.; Liu, B. J.; Liu, C. W.; Liu, D.; Liu, F.; Liu, G. M.; Liu, H. B.; Liu, J.; Liu, J. J.; Liu, J. B.; Liu, K.; Liu, K. Y.; Liu, K.; Liu, L.; Liu, Q.; Liu, S. B.; Liu, T.; Liu, X.; Liu, Y. W.; Liu, Y.; Liu, Y. L.; Liu, Z. Q.; Liu, Z. Y.; Liu, Z. W.; Logashenko, I.; Long, Y.; Lu, C. G.; Lu, J. X.; Lu, N.; Lu, Q. F.; Lu, Y.; Lu, Y.; Lu, Z.; Lukin, P.; Luo, F. J.; Luo, T.; Luo, X. F.; Luo, Y. H.; Lyu, H. J.; Lyu, X. R.; Ma, J. P.; Ma, P.; Ma, Y.; Ma, Y. M.; Maas, F.; Malde, S.; Matvienko, D.; Meng, Z. X.; Mitchell, R.; Nefediev, A.; Nefedov, Y.; Olsen, S. L.; Ouyang, Q.; Pakhlov, P.; Pakhlova, G.; Pan, X.; Pan, Y.; Passemar, E.; Pei, Y. P.; Peng, H. P.; Peng, L.; Peng, X. Y.; Peng, X. J.; Peters, K.; Pivovarov, S.; Pyata, E.; Qi, B. B.; Qi, Y. Q.; Qian, W. B.; Qian, Y.; Qiao, C. F.; Qin, J. J.; Qin, J. J.; Qin, L. Q.; Qin, X. S.; Qiu, T. L.; Rademacker, J.; Redmer, C. F.; Sang, H. Y.; Saur, M.; Shan, W.; Shan, X. Y.; Shang, L. L.; Shao, M.; Shekhtman, L.; Shen, C. P.; Shen, J. M.; Shen, Z. T.; Shi, H. C.; Shi, X. D.; Shwartz, B.; Sokolov, A.; Song, J. J.; Song, W. M.; Song, Y.; Song, Y. X.; Sukharev, A.; Sun, J. F.; Sun, L.; Sun, X. M.; Sun, Y. J.; Sun, Z. P.; Tang, J.; Tang, S. S.; Tang, Z. B.; Tian, C. H.; Tian, J. S.; Tian, Y.; Tikhonov, Y.; Todyshev, K.; Uglov, T.; Vorobyev, V.; Wan, B. D.; Wang, B. L.; Wang, B.; Wang, D. Y.; Wang, G. Y.; Wang, G. L.; Wang, H. L.; Wang, J.; Wang, J. H.; Wang, J. C.; Wang, M. L.; Wang, R.; Wang, R.; Wang, S. B.; Wang, W.; Wang, W. P.; Wang, X. C.; Wang, X. D.; Wang, X. L.; Wang, X. L.; Wang, X. P.; Wang, X. F.; Wang, Y. D.; Wang, Y. P.; Wang, Y. Q.; Wang, Y. L.; Wang, Y. G.; Wang, Z. Y.; Wang, Z. Y.; Wang, Z. L.; Wang, Z. G.; Wei, D. H.; Wei, X. L.; Wei, X. M.; Wen, Q. G.; Wen, X. J.; Wilkinson, G.; Wu, B.; Wu, J. J.; Wu, L.; Wu, P.; Wu, T. W.; Wu, Y. S.; Xia, L.; Xiang, T.; Xiao, C. W.; Xiao, D.; Xiao, M.; Xie, K. P.; Xie, Y. H.; Xing, Y.; Xing, Z. Z.; Xiong, X. N.; Xu, F. R.; Xu, J.; Xu, L. L.; Xu, Q. N.; Xu, X. C.; Xu, X. P.; Xu, Y. C.; Xu, Y. P.; Xu, Y.; Xu, Z. Z.; Xuan, D. W.; Xue, F. F.; Yan, L.; Yan, M. J.; Yan, W. B.; Yan, W. C.; Yan, X. S.; Yang, B. F.; Yang, C.; Yang, H. J.; Yang, H. R.; Yang, H. T.; Yang, J. F.; Yang, S. L.; Yang, Y. D.; Yang, Y. H.; Yang, Y. S.; Yang, Y. L.; Yang, Z. W.; Yang, Z. Y.; Yao, D. L.; Yin, H.; Yin, X. H.; Yokozaki, N.; You, S. Y.; You, Z. Y.; Yu, C. X.; Yu, F. S.; Yu, G. L.; Yu, H. L.; Yu, J. S.; Yu, J. Q.; Yuan, L.; Yuan, X. B.; Yuan, Z. Y.; Yue, Y. F.; Zeng, M.; Zeng, S.; Zhang, A. L.; Zhang, B. W.; Zhang, G. Y.; Zhang, G. Q.; Zhang, H. J.; Zhang, H. B.; Zhang, J. Y.; Zhang, J. L.; Zhang, J.; Zhang, L.; Zhang, L. M.; Zhang, Q. A.; Zhang, R.; Zhang, S. L.; Zhang, T.; Zhang, X.; Zhang, Y.; Zhang, Y. J.; Zhang, Y. X.; Zhang, Y. T.; Zhang, Y. F.; Zhang, Y. C.; Zhang, Y.; Zhang, Y.; Zhang, Y. M.; Zhang, Y. L.; Zhang, Z. H.; Zhang, Z. Y.; Zhang, Z. Y.; Zhao, H. Y.; Zhao, J.; Zhao, L.; Zhao, M. G.; Zhao, Q.; Zhao, R. G.; Zhao, R. P.; Zhao, Y. X.; Zhao, Z. G.; Zhao, Z. X.; Zhemchugov, A.; Zheng, B.; Zheng, L.; Zheng, Q. B.; Zheng, R.; Zheng, Y. H.; Zhong, X. H.; Zhou, H. J.; Zhou, H. Q.; Zhou, H.; Zhou, S. H.; Zhou, X.; Zhou, X. K.; Zhou, X. P.; Zhou, X. R.; Zhou, Y. L.; Zhou, Y.; Zhou, Y. X.; Zhou, Z. Y.; Zhu, J. Y.; Zhu, K.; Zhu, R. D.; Zhu, R. L.; Zhu, S. H.; Zhu, Y. C.; Zhu, Z. A.; Zhukova, V.; Zhulanov, V.; Zou, B. S.; Zuo, Y. B.Source Title:FRONTIERS OF PHYSICSLanguage:EnglishDocument Type:ArticleKeywords Plus:ANOMALOUS MAGNETIC-MOMENT; NONLEPTONIC WEAK DECAYS; ELECTRIC-DIPOLE-MOMENT; CP VIOLATION; CROSS-SECTION; HYPERON DECAYS; FORM-FACTORS; ELECTROMAGNETIC DECAYS; HADRON SPECTROSCOPY; BRANCHING FRACTIONSAbstract:The super tau-charm facility (STCF) is an electron-positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5 x 1035 cm-2 center dot s-1 or higher. The STCF will produce a data sample about a factor of 100 larger than that of the present tau-charm factory - the BEPCII, providing a unique platform for exploring the asymmetry of matter-antimatter (charge-parity violation), in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions, as well as searching for exotic hadrons and physics beyond the Standard Model. The STCF project in China is under development with an extensive R&D program. This document presents the physics opportunities at the STCF, describes conceptual designs of the STCF detector system, and discusses future plans for detector R&D and physics case studies.Addresses:[Wen, Q. G.] Anhui Univ, Hefei 230039, Peoples R China; [Cheng, T. G.; Geng, L. S.; Guo, F. K.; Lu, J. X.; Wang, X. P.; Xie, K. P.; Yuan, L.; Zhang, Q. A.; Zhang, Y. J.; Zhou, X. P.] Beihang Univ, Beijing 100191, Peoples R China; [Achasov, M.; Barnyakov, A.; Blinov, V.; Bobrovnikov, V.; Bogomyagkov, A.; Bondar, A.; Denig, A.; Druzhinin, V.; Epifanov, D.; Fedotovich, G.; Ivanov, V.; Koop, I.; Kravchenko, E.; Kuzmin, A.; Levichev, E.; Logashenko, I.; Lukin, P.; Matvienko, D.; Pivovarov, S.; Pyata, E.; Shekhtman, L.; Shwartz, B.; Sokolov, A.; Sukharev, A.; Tikhonov, Y.; Todyshev, K.; Vorobyev, V.; Zhulanov, V.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia; [Dias, J. M.; Guevara, A.; Guo, F. K.; Yan, M. J.; Zhang, X.; Zou, B. S.] Chinese Acad Sci, Inst Theoret Phys, CAS Key Lab Theoret Phys, Beijing 100190, Peoples R China; [Kenzie, M.] Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England; [Chen, K.; Chen, S. L.; Li, X. Q.; Liu, F.; Luo, X. F.; Sun, X. M.; Wang, Y. P.; Xie, Y. H.; Yin, H.; Yuan, X. B.; Zhang, B. W.; Zhou, X. K.] Cent China Normal Univ, Wuhan 430079, Peoples R China; [Lu, Y.; Xiao, C. W.; Xiong, X. N.] Cent South Univ, Changsha 410083, Peoples R China; [Kang, X. L.; Peng, X. Y.; Zheng, L.] China Univ Geosci, Wuhan 430074, Peoples R China; [Hu, X. H.; Xing, Y.] China Univ Min & Technol, Xuzhou 221116, Jiangsu, Peoples R China; [Song, Y. X.] Ecole Polytech Fed Lausanne, Lausanne, Switzerland; [Guo, Y. P.; Liu, T.; Luo, T.; Shen, C. P.; Yan, L.] Fudan Univ, Shanghai 200433, Peoples R China; [Peters, K.] Goethe Univ Frankfurt, D-60325 Frankfurt, Germany; [Liao, G. R.; Qin, L. Q.; Wei, D. H.; Xiao, C. W.] Guangxi Normal Univ, Guilin 541004, Peoples R China; [Jiang, S. Z.; Liu, H. B.] Guangxi Univ, Nanning 530004, Peoples R China; [Geng, C. Q.; Li, G.; Liu, C. W.; Ma, Y.; Wan, B. D.; Wu, T. W.; Zhou, Y. L.] UCAS, Hangzhou Inst Adv Study, Hangzhou 310024, Peoples R China; [Guo, Z. H.] Hebei Normal Univ, Shijiazhuang 050024, Hebei, Peoples R China; [Wang, G. L.; Wang, Y. Q.] Hebei Univ, Baoding 071002, Peoples R China; [Zhang, Y.] Hefei Univ Technol, Hefei 230601, Peoples R China; [Denig, A.; Maas, F.] Helmholtz Inst Mainz, Staudinger Weg 18, D-55099 Mainz, Germany; [Cai, F. M.; Cao, J. J.; Chang, Q.; Chen, L. L.; Hao, X. Q.; He, Y. L.; Heng, Z. X.; Ji, Q. P.; Li, H. J.; Li, W. J.; Shang, L. L.; Song, J. J.; Sun, J. F.; Wang, X. C.; Wang, X. L.; Wang, Y. L.; Yan, X. S.; Yang, B. F.; Yang, Y. D.; Yang, Y. L.; Yue, Y. F.; Zhang, G. Y.; Zhou, H. J.] Henan Normal Univ, Xinxiang 453007, Henan, Peoples R China; [Gong, T.; Wang, G. Y.; Zhang, J. L.; Zhao, J.; Zhu, J. Y.] Henan Univ, Kaifeng 475004, Peoples R China; [Olsen, S. L.] Chung Ang Univ, High Energy Phys Ctr, Seoul 06974, South Korea; [Bodrov, D.; Pakhlov, P.; Pakhlova, G.] Higher Sch Econ, 11 Pokrovsky Bulvar, Moscow 109028, Russia; [Jiao, Z.; Lyu, H. J.] Huangshan Univ, Huangshan 245000, Peoples R China; [Liao, L. Z.] Hubei Univ Automot Technol, Shiyan 442002, Peoples R China; [Gui, L. C.; Lu, Q. F.; Shan, W.; Zhong, X. H.] Hunan Normal Univ, Changsha 410081, Peoples R China; [Li, H. L.; Peng, L.] Hunan Univ Sci & Technol, Xiangtan 411201, Peoples R China; [Cheng, S.; Dai, L. Y.; Shen, J. M.; Yao, D. L.; Yu, J. S.; Yu, J. Q.; Zhang, S. L.] Hunan Univ, Changsha 410082, Peoples R China; [Mitchell, R.; Passemar, E.] Indiana Univ, Bloomington, IN 47405 USA; [Li, R. H.; Xu, Q. N.; Zhao, Z. X.; Zhou, S. H.] Inner Mongolia Univ, Hohhot 010021, Peoples R China; [Zhang, G. Q.] Inst Adv Sci Facil, Shenzhen 518107, Peoples R China; [Chen, Y.; Dong, L. Y.; Fang, S. S.; Hu, H. M.; Li, H. B.; Li, J.; Liu, B. J.; Ouyang, Q.; Wang, M. L.; Xing, Z. Z.; Zhao, Q.; Zhu, K.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China; [Cao, X.; Chen, X. R.; Duan, L. M.; Gou, B.; Guo, A. Q.; He, Z. B.; Hu, R. J.; Huang, X. J.; Li, D. Y.; Li, X.; Li, Z. J.; Liang, Y. T.; Lin, D. X.; Lu, C. G.; Ma, P.; Ma, Y. M.; Qian, Y.; Qiu, T. L.; Sun, Z. P.; Tian, Y.; Wang, R.; Wei, X. L.; Wen, X. J.; Yang, H. R.; Yang, Y. S.; Yin, X. H.; Zhao, H. Y.; Zhao, Y. X.] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China; [Cheng, H. Y.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan; [Ma, J. P.] Chinese Acad Sci, Inst Theoret Phys, Beijing 100190, Peoples R China; [Chen, Y. Q.; Song, W. M.] Jilin Univ, Changchun 130012, Peoples R China; [Xu, F. R.] Jinan Univ, Guangzhou 510632, Peoples R China; [Aliberti, R.; Denig, A.; Gradl, W.; Husken, N.; Maas, F.; Redmer, C. F.] Johannes Gutenberg Univ Mainz, Johann Joachim Becher Weg 45, D-55099 Mainz, Germany; [Bakina, O.; Boyko, I.; Dedovich, D.; Denisenko, I.; Guskov, A.; Nefedov, Y.; Zhemchugov, A.] Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia; [Nefediev, A.; Zhukova, V.] Josef Stefan Inst, Ljubljana 1000, Slovenia; [Du, Z. G.; Li, P. R.; Liu, K.; Liu, X.; Liu, Z. Y.; Peng, X. J.; Wang, X. F.; Xiao, D.; You, S. Y.; Yu, F. S.] Lanzhou Univ, Lanzhou 730000, Peoples R China; [Li, C. H.; Zuo, Y. B.] Liaoning Normal Univ, Dalian 116029, Peoples R China; [Gong, L.; Kang, X. S.; Liu, K. Y.; Xu, Y.] Liaoning Univ, Shenyang 110036, Peoples R China; [Wu, L.; Zhu, R. L.] Nanjing Normal Univ, Nanjing 210023, Peoples R China; [Liu, Z. W.] Nanjing Univ, Nanjing 210023, Peoples R China; [Yu, C. X.; Zhao, M. G.] Nankai Univ, Tianjin 300071, Peoples R China; [Huang, J. S.] Nanyang Normal Univ, Nanyang 473061, Peoples R China; [Cheng, J.; Wang, Y. D.; Wang, Z. G.; Xu, Y. P.; Yu, G. L.] North China Elect Power Univ, Beijing 102206, Peoples R China; [Hu, Y. C.; Wang, J.; Wei, X. M.; Xue, F. F.; Zhao, R. G.; Zheng, R.] Northwestern Polytech Univ, Xian 710072, Peoples R China; [Barnyakov, A.; Blinov, V.; Koop, I.] Novosibirsk State Tech Univ, Novosibirsk 630073, Russia; [Blinov, V.; Bobrovnikov, V.; Koop, I.; Kravchenko, E.; Sukharev, A.; Todyshev, K.] Novosibirsk State Univ, Novosibirsk 630090, Russia; [Pakhlova, G.; Uglov, T.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow 119991, Russia; [Olsen, S. L.] Inst for Basic Sci Korea, Particle & Nucl Phys Inst, Daejeon 34126, South Korea; [An, L. P.; Cao, Q. H.; Chao, K. T.; Dai, X. C.; Feng, X.; Gao, Y. N.; Hu, W. H.; Liu, J.; Luo, Y. H.; Saur, M.; Wang, D. Y.; Xiang, T.; Yang, Z. W.; Yuan, Z. Y.; Zhang, Y. X.; Zhu, S. H.] Peking Univ, Beijing 100871, Peoples R China; [Li, C.; Li, G.] Qufu Normal Univ, Qufu 273165, Peoples R China; [Li, L.] Renmin Univ China, Beijing 100872, Peoples R China; [Hu, K.; Huang, X. T.; Jiang, J.; Jiao, J. B.; Li, T.; Liu, Z. Q.; Qin, X. S.; Yang, C.; Zhang, L.] Shandong Univ, Jinan 250100, Peoples R China; [Chen, J. F.; Chen, X. F.; Ding, D. Z.] Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 201899, Peoples R China; [Gao, J.; Guo, J.; He, X. G.; Li, L.; Li, S.; Liu, K.; Wang, S. B.; Wang, W.; Yang, H. J.; Zhang, T.] Shanghai Jiao Tong Univ, Shanghai 200240, Peoples R China; [Bodrov, D.; Lei, Y.; Pan, X.; Xu, X. P.; Zhu, R. D.] Soochow Univ, Suzhou 215006, Peoples R China; [Hua, J.; Li, H. N.; Liang, J. H.; Liao, Y.; Liu, G. M.; Wang, H. L.] South China Normal Univ, Guangzhou 510006, Peoples R China; [Bai, Y.; Chen, D. Y.; Chen, H. X.; Jia, S.; Lu, Z.; Pan, Y.; Wu, P.; Zhang, Y. C.; Zhou, H. Q.; Zhou, Z. Y.] Southeast Univ, Nanjing 211189, Peoples R China; [An, Q.; Bai, X. Z.; Cao, Z.; Dong, W. H.; Du, D. S.; Fang, Z. J.; Feng, C. Q.; Feng, Y. T.; Gu, J. L.; Guo, J. C.; Han, L.; Han, M.; He, S. Q.; Hou, B. L.; Huang, G. S.; Jia, Z. K.; Li, F.; Li, H.; Li, J. M.; Li, L. Y.; Li, X. H.; Liang, H.; Lin, X. S.; Liu, D.; Liu, J. B.; Liu, L.; Liu, S. B.; Liu, Y. W.; Liu, Y. L.; Long, Y.; Lu, N.; Ouyang, Q.; Pei, Y. P.; Peng, H. P.; Qi, B. B.; Qi, Y. Q.; Qin, J. J.; Sang, H. Y.; Shan, X. Y.; Shao, M.; Shen, Z. T.; Shi, H. C.; Shi, X. D.; Song, Y.; Sun, Y. J.; Tang, S. S.; Tang, Z. B.; Tian, C. H.; Wang, B.; Wang, J. H.; Wang, J. C.; Wang, R.; Wang, W. P.; Wang, X. L.; Wang, Y. G.; Wang, Z. Y.; Wu, B.; Wu, Y. S.; Xia, L.; Xu, L. L.; Xu, X. C.; Xu, Z. Z.; Xuan, D. W.; Yan, W. B.; Yang, H. T.; Yang, J. F.; Yang, Z. Y.; Yu, H. L.; Zhang, A. L.; Zhang, H. J.; Zhang, Y.; Zhang, Y. F.; Zhang, Y. L.; Zhang, Z. Y.; Zhao, L.; Zhao, Z. G.; Zhou, H.; Zhou, X. R.; Zhou, Y.; Zhu, Y. C.; Zhu, Z. A.] State Key Lab Particle Detect & Elect, Beijing 100049, Peoples R China; [Chen, W.; Huang, Y. S.; Li, N.; Tang, J.; You, Z. Y.; Zhang, J.; Zhang, Y. M.] Sun Yat Sen Univ, Guangzhou 510275, Peoples R China; [Passemar, E.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA; [Chen, S. M.; Zeng, M.; Zhang, L. M.] Tsinghua Univ, Beijing 100084, Peoples R China; [Passemar, E.] Univ Valencia, E-46071 Valencia, Spain; [Rademacker, J.] Univ Bristol, Bristol BS8 1TL, England; [Chen, S.; Chen, S. P.; Fu, J. L.; Guo, F. K.; Han, K. L.; He, J. B.; Hou, Y. R.; Huang, M.; Huang, Q. Y.; Huang, W. Q.; Jing, H. J.; Li, H. B.; Lin, C. X.; Liu, Q.; Lu, Y.; Lyu, X. R.; Qian, W. B.; Qiao, C. F.; Wang, B. L.; Wang, Z. L.; Wu, J. J.; Yang, S. L.; Yang, Y. H.; Zhang, H. B.; Zhang, J. Y.; Zhao, R. P.; Zheng, Y. H.; Zhou, Y. X.; Zou, B. S.] Univ Chinese Acad Sci, Beijing 100049, Peoples R China; [Meng, Z. X.] Univ Jinan, Jinan 250022, Peoples R China; [Gilman, A.; Malde, S.; Wilkinson, G.] Univ Oxford, Keble Rd, Oxford OX1 3RH, England; [An, Q.; Bai, X. Z.; Cao, Z.; Dong, W. H.; Du, D. S.; Fang, Z. J.; Feng, C. Q.; Feng, Y. T.; Gu, J. L.; Guo, J. C.; Han, L.; Han, M.; He, S. Q.; Hou, B. L.; Huang, G. S.; Jia, Z. K.; Li, F.; Li, H.; Li, J. M.; Li, L. Y.; Li, X. H.; Li, Y. Y.; Liang, H.; Lin, X. S.; Liu, D.; Liu, J. B.; Liu, L.; Liu, S. B.; Liu, Y. W.; Liu, Y. L.; Long, Y.; Lu, N.; Pei, Y. P.; Peng, H. P.; Qi, B. B.; Qi, Y. Q.; Qin, J. J.; Sang, H. Y.; Shan, X. Y.; Shao, M.; Shen, Z. T.; Shi, H. C.; Shi, X. D.; Song, Y.; Sun, Y. J.; Tang, S. S.; Tang, Z. B.; Tian, C. H.; Wang, B.; Wang, J. H.; Wang, J. C.; Wang, R.; Wang, W. P.; Wang, X. L.; Wang, Y. G.; Wang, Z. Y.; Wu, B.; Wu, Y. S.; Xia, L.; Xu, L. L.; Xu, X. C.; Xu, Z. Z.; Xuan, D. W.; Yan, W. B.; Yang, H. T.; Yang, J. F.; Yang, Z. Y.; Yu, H. L.; Zhang, A. L.; Zhang, H. J.; Zhang, Y.; Zhang, Y. F.; Zhang, Y. L.; Zhang, Z. Y.; Zhao, L.; Zhao, Z. G.; Zhou, H.; Zhou, X. R.; Zhou, Y.; Zhu, Y. C.; Zhu, Z. A.] Univ Sci & Technol China, Hefei 230026, Peoples R China; [Bu, Z. H.; Ge, P. S.; Wang, Z. Y.; Zheng, Q. B.] Univ Shanghai Sci & Technol, Shanghai 200093, Peoples R China; [Chen, X.; Hou, T. J.; Hu, C. Y.; Li, X. H.; Liu, J. J.; Luo, F. J.; Qin, J. J.; Wang, X. D.; Xiao, M.; Zeng, S.; Zhang, Y.; Zhang, Z. H.; Zheng, B.] Univ South China, Hengyang 421001, Peoples R China; [Zhang, R.] Univ Wisconsin, Madison, WI 53706 USA; [Khoukaz, A.] Univ Munster, Wilhelm Klemm Str 9, D-48149 Munster, Germany; [Cai, H.; Du, Y. J.; Fan, Y. L.; Jia, J. J.; Jiang, H. B.; Sun, L.; Zhang, Z. Y.; Zhou, X.] Wuhan Univ, Wuhan 430072, Peoples R China; [Chen, P.; Tian, J. S.] Chinese Acad Sci, Inst Opt & Precis Mech, Xian 710119, Peoples R China; [Li, Y.; Xu, Y. C.] Yantai Univ, Yantai 264005, Peoples R China; [Dai, J. P.] Yunnan Univ, Kunming 650500, Peoples R China; [Chen, H.; Yokozaki, N.] Zhejiang Univ, Hangzhou 310027, Peoples R China; [Ai, X. C.; Ke, B. C.; Liu, Y.; Xu, J.; Yan, W. C.; Zhang, Y. T.] Zhengzhou Univ, Zhengzhou 450001, Peoples R ChinaAffiliations:Anhui University; Beihang University; Russian Academy of Sciences; Budker Institute of Nuclear Physics; Chinese Academy of Sciences; Institute of Theoretical Physics, CAS; University of Cambridge; Central China Normal University; Central South University; China University of Geosciences; China University of Mining & Technology; Swiss Federal Institutes of Technology Domain; Ecole Polytechnique Federale de Lausanne; Fudan University; Goethe University Frankfurt; Guangxi Normal University; Guangxi University; Hebei Normal University; Hebei University; Hefei University of Technology; Henan Normal University; Henan University; Chung Ang University; HSE University (National Research University Higher School of Economics); Huangshan University; Hubei University of Automotive Technology; Hunan Normal University; Hunan University of Science & Technology; Hunan University; Indiana University System; Indiana University Bloomington; Inner Mongolia University; Institute of Advanced Science Facilities, Shenzhen; Chinese Academy of Sciences; Institute of High Energy Physics, CAS; Chinese Academy of Sciences; Institute of Modern Physics, CAS; Academia Sinica - Taiwan; Chinese Academy of Sciences; Institute of Theoretical Physics, CAS; Jilin University; Jinan University; Johannes Gutenberg University of Mainz; Joint Institute for Nuclear Research - Russia; Slovenian Academy of Sciences & Arts (SASA); Jozef Stefan Institute; Lanzhou University; Liaoning Normal University; Liaoning University; Nanjing Normal University; Nanjing University; Nankai University; Nanyang Normal College; North China Electric Power University; Northwestern Polytechnical University; Novosibirsk State Technical University; Novosibirsk State University; Russian Academy of Sciences; Russian Academy of Science Lebedev Physical Institute; Institute for Basic Science - Korea (IBS); Peking University; Qufu Normal University; Renmin University of China; Shandong University; Chinese Academy of Sciences; Shanghai Institute of Ceramics, CAS; Shanghai Jiao Tong University; Soochow University - China; South China Normal University; Southeast University - China; Sun Yat Sen University; United States Department of Energy (DOE); Jefferson National Accelerator; Tsinghua University; University of Valencia; University of Bristol; Chinese Academy of Sciences; University of Chinese Academy of Sciences, CAS; University of Jinan; University of Oxford; Chinese Academy of Sciences; University of Science & Technology of China, CAS; University of Shanghai for Science & Technology; University of South China; University of Wisconsin System; University of Wisconsin Madison; University of Munster; Wuhan University; Chinese Academy of Sciences; Xi'an Institute of Optics & Precision Mechanics, CAS; Yantai University; Yunnan University; Zhejiang University; Zhengzhou UniversityPublication Year:2024Volume:19Issue:1Article Number:14701DOI Link:http://dx.doi.org/10.1007/s11467-023-1333-z数据库ID(收录号):WOS:001107062000002 -
Record 307 of
Title:Compensation control strategy for photoelectric stabilized platform based on disturbance observation
Author Full Names:Chang, Sansan; Cao, Jianzhong; Pang, Ji; Zhou, Feihang; Chen, WeiningSource Title:AEROSPACE SCIENCE AND TECHNOLOGYLanguage:EnglishDocument Type:ArticleKeywords Plus:SLIDING MODE CONTROL; TRACKING; PRECISIONAbstract:The accuracy and stability of the photoelectric stabilized platform will be inevitably affected by the friction disturbance and the base platform disturbance in the actual operation. To improve the disturbance rejection performance, two kinds of the disturbance observers are employed and compared in this paper, including the adaptive proportion-integrator observer and the robust sliding mode observer. The disturbances of the friction torque and the moving base are observed, then these observed values are compensated to the voltage loop by the feedback and feedforward, respectively. While the disturbances of the friction torque and the shaking base are compensated, the parameters of the speed stability loop are also tuned to improve the performance of this photoelectric stabilized platform. Finally, the effectiveness of the proposed method is verified by both simulations and experiments. The results show that the proposed disturbance compensation control method based on the sliding mode observer has strong robustness and can effectively reduce the impact of system disturbances.Addresses:[Chang, Sansan; Cao, Jianzhong; Chen, Weining] Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China; [Chang, Sansan] Univ Chinese Acad Sci, Beijing 100049, Peoples R China; [Pang, Ji; Zhou, Feihang] Xian Univ Posts & Telecommun, Xian 710121, Peoples R China; [Chen, Weining] Northwestern Polytech Univ, Sch Automat, Xian 710129, Peoples R China; [Chang, Sansan; Cao, Jianzhong; Chen, Weining] Key Lab Spacecraft Opt Imaging & Measurement Techn, Xian 710119, Peoples R ChinaAffiliations:Chinese Academy of Sciences; Xi'an Institute of Optics & Precision Mechanics, CAS; Chinese Academy of Sciences; University of Chinese Academy of Sciences, CAS; Xi'an University of Posts & Telecommunications; Northwestern Polytechnical UniversityPublication Year:2024Volume:145Article Number:108909DOI Link:http://dx.doi.org/10.1016/j.ast.2024.108909数据库ID(收录号):WOS:001177537000001 -
Record 308 of
Title:Dark Light Image-Enhancement Method Based on Multiple Self-Encoding Prior Collaborative Constraints
Author Full Names:Guan, Lei; Dong, Jiawei; Li, Qianxi; Huang, Jijiang; Chen, Weining; Wang, HaoSource Title:PHOTONICSLanguage:EnglishDocument Type:ArticleKeywords Plus:RETINEX; NETWORK; MODELAbstract:The purpose of dark image enhancement is to restore dark images to visual images under normal lighting conditions. Due to the ill-posedness of the enhancement process, previous enhancement algorithms often have overexposure, underexposure, noise increases and artifacts when dealing with complex and changeable images, and the robustness is poor. This article proposes a new enhancement approach consisting in constructing a dim light enhancement network with more robustness and rich detail features through the collaborative constraint of multiple self-coding priors (CCMP). Specifically, our model consists of two prior modules and an enhancement module. The former learns the feature distribution of the dark light image under normal exposure as an a priori term of the enhancement process through multiple specific autoencoders, implicitly measures the enhancement quality and drives the network to approach the truth value. The latter fits the curve mapping of the enhancement process as a fidelity term to restore global illumination and local details. Through experiments, we concluded that the new method proposed in this article can achieve more excellent quantitative and qualitative results, improve detail contrast, reduce artifacts and noise, and is suitable for dark light enhancement in multiple scenes.Addresses:[Guan, Lei; Dong, Jiawei; Li, Qianxi; Huang, Jijiang; Chen, Weining; Wang, Hao] Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China; [Guan, Lei; Dong, Jiawei; Li, Qianxi] Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaAffiliations:Chinese Academy of Sciences; Xi'an Institute of Optics & Precision Mechanics, CAS; Chinese Academy of Sciences; University of Chinese Academy of Sciences, CASPublication Year:2024Volume:11Issue:2Article Number:190DOI Link:http://dx.doi.org/10.3390/photonics11020190数据库ID(收录号):WOS:001172736100001 -
Record 309 of
Title:Miniaturizable Phase-Sensitive Amplifier Based on Vector Dual-Pump Structure for Phase Regeneration of PDM Signal
Author Full Names:Jia, Shuaiwei; Xie, Zhuang; Shao, Wen; Han, Xiaotian; Su, Yulong; Meng, Jiacheng; Gao, Duorui; Wang, Wei; Xie, XiaopingSource Title:IEEE PHOTONICS JOURNALLanguage:EnglishDocument Type:ArticleKeywords Plus:OPTICAL-PHASE; WAVE-GUIDES; AMPLIFICATION; NOISE; TRANSMISSION; HYBRID; COMPENSATION; GENERATION; 3RD-ORDER; SYSTEMSAbstract:Phase sensitive amplification is indispensable in promoting applications such as all-optical regenerators, quantum communications, all-optical analog-to-digital conversion, and long-distance communications. In this article, we proposed a vector dual-pump nondegenerate phase-sensitive amplification scheme based on ultra-silicon-rich nitride (Si7N3) waveguide, and theoretically verified its capability for all-optical regeneration of phase-encoded polarization-division multiplexing (PDM) signal without the need for complex polarization diversity structures. We achieved a gain extinction ratio (GER) of similar to 37.5 dB by using a 3-mm-long Si7N3 waveguide with a high nonlinear coefficient (similar to 279 /W/m). Signal quality before and after regeneration is characterized by constellation diagram and error vector magnitude (EVM). The results show that the EVM of the degraded PDM differential phase-shift keying (DPSK) signals with two polarization states of 54% and 53.8%, can be improved to 13.6% and 13.6%, respectively, after regeneration, directly illustrating the remarkable phase noise suppression effect. The applicability of the scheme in PDM quadrature phase shift keying (QPSK) signals was further investigated. Similarly, the EVMs of the two polarization states of the deteriorated QPSK signals are optimized from 28.9% and 29.3% to 13.7% and 13.9%, respectively. The proposed scheme has promising applications in integrated all-optical processing systems and long-distance transmission of optical communications.Addresses:[Jia, Shuaiwei; Xie, Zhuang; Shao, Wen; Han, Xiaotian; Su, Yulong; Gao, Duorui; Wang, Wei; Xie, Xiaoping] Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Xian 710119, Peoples R China; [Jia, Shuaiwei; Xie, Zhuang; Shao, Wen; Han, Xiaotian; Xie, Xiaoping] Univ Chinese Acad Sci, Sch Future Technol, Beijing 100049, Peoples R China; [Jia, Shuaiwei; Xie, Zhuang; Shao, Wen; Han, Xiaotian; Xie, Xiaoping] Univ Chinese Acad Sci, Beijing 100049, Peoples R China; [Su, Yulong] Xidian Univ, Dept Optoelect Engn, Xian 710071, Peoples R ChinaAffiliations:Chinese Academy of Sciences; Xi'an Institute of Optics & Precision Mechanics, CAS; State Key Laboratory of Transient Optics & Photonics; Chinese Academy of Sciences; University of Chinese Academy of Sciences, CAS; Chinese Academy of Sciences; University of Chinese Academy of Sciences, CAS; Xidian UniversityPublication Year:2024Volume:16Issue:1Article Number:7200112DOI Link:http://dx.doi.org/10.1109/JPHOT.2023.3335923数据库ID(收录号):WOS:001133518800009 -
Record 310 of
Title:Auto-Alignment Non-Contact Optical Measurement Method for Quantifying Wobble Error of a Theodolite on a Vehicle-Mounted Platform
Author Full Names:Li, Xiangyu; Hao, Wei; Xie, Meilin; Liu, Bo; Jiang, Bo; Lv, Tao; Song, Wei; Ruan, PingSource Title:TEHNICKI VJESNIK-TECHNICAL GAZETTELanguage:EnglishDocument Type:ArticleKeywords Plus:DESIGNAbstract:During non -landing measurements of a theodolite, the accuracy of the goniometric readings can be compromised by wobble errors induced by various factors such as wind loads, theodolite driving torque, and the stiffness of the supporting structure. To achieve high -precision non -landing measurements, it is essential to accurately determine and correct the platform wobble errors affecting the azimuth and pitch pointing angles. In this paper, a non -contact optical measurement method is proposed for quantifying platform wobble errors. The method establishes an auto -alignment optical path between an autocollimator and a reflector in the measuring device. By detecting the deviation angle of the CCD image point as the optical path changes, precise measurements of the platform wobble errors can be obtained. Experimental results demonstrate that the measuring device can achieve an auto -alignment optical path within 5 minutes, significantly improving measurement efficiency. Furthermore, after measuring the platform wobble error and applying data correction, the average error in the azimuth pointing angle is reduced from 31.5 '' to 9.8 '', and the average error in the pitch pointing angle is reduced from 21 '' to 9.2 ''. These results highlight the substantial correction effect achieved by the proposed method.Addresses:[Li, Xiangyu; Hao, Wei; Xie, Meilin; Liu, Bo; Jiang, Bo; Lv, Tao; Song, Wei; Ruan, Ping] Chinese Acad Sci, Xian Inst Opt & Precis Mech, Key Lab Space Precis Measurement Technol, Xian 710119, Peoples R China; [Li, Xiangyu] Univ Chinese Acad Sci, Beijing 100049, Peoples R China; [Li, Xiangyu; Hao, Wei; Xie, Meilin; Liu, Bo; Jiang, Bo; Lv, Tao; Song, Wei; Ruan, Ping] 17 Xinxi Rd,New Ind Pk,Xian Hitech Ind Dev Zone, Xian 710119, Shaanxi, Peoples R ChinaAffiliations:Chinese Academy of Sciences; Xi'an Institute of Optics & Precision Mechanics, CAS; Chinese Academy of Sciences; University of Chinese Academy of Sciences, CASPublication Year:2024Volume:31Issue:2Start Page:449End Page:459DOI Link:http://dx.doi.org/10.17559/TV-20230510000617数据库ID(收录号):WOS:001183756000012 -
Record 311 of
Title:Efficient and high-spatiotemporal-quality terawatt-class mid-infrared optical parametric amplifiers by spatially shaped pumping
Author Full Names:Liu, Xin; Li, Jinhui; Zhen, Qiwen; Liu, Keyang; Wang, Yishan; Zhao, Wei; Cao, Huabao; Fu, YuxiSource Title:JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICSLanguage:EnglishDocument Type:ArticleKeywords Plus:2 MU-M; CHIRPED-PULSE AMPLIFICATION; HIGH-ENERGY; 1 KHZ; HIGH-CONTRAST; CYCLE PULSES; OPCPA SYSTEM; LASER; GENERATION; PHASEAbstract:We propose a method to efficiently generate terawatt (TW )-class mid -infrared (MIR) femtosecond laser pulses with high spatiotemporal quality through optical parametric chirped -pulse amplification (OPCPA). By transforming the pump -beam profile for the OPCPA from Gaussian to flat -top using a designed field mapping optics consisting of two aspherical lenses, we obtain a TW-class femtosecond laser pulse at 2 mu m with a conversion efficiency of over 36% according to our simulations. Furthermore, the spatiotemporal coupling effects are greatly suppressed in our method compared to an OPCPA system that is pumped by a widely employed Gaussian profile beam. Our work provides a simple and robust method for developing OPCPA systems with high efficiency and high pulse quality. (c) 2024 Optica Publishing GroupAddresses:[Liu, Xin; Li, Jinhui; Zhen, Qiwen; Liu, Keyang; Wang, Yishan; Zhao, Wei; Cao, Huabao; Fu, Yuxi] Chinese Acad Sci, Ctr Attosecond Sci & Technol, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China; [Liu, Xin; Li, Jinhui; Zhen, Qiwen; Liu, Keyang; Wang, Yishan; Zhao, Wei; Cao, Huabao; Fu, Yuxi] Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaAffiliations:Chinese Academy of Sciences; Xi'an Institute of Optics & Precision Mechanics, CAS; Chinese Academy of Sciences; University of Chinese Academy of Sciences, CASPublication Year:2024Volume:41Issue:2Start Page:364End Page:372DOI Link:http://dx.doi.org/10.1364/JOSAB.509609数据库ID(收录号):WOS:001204097300002 -
Record 312 of
Title:Accurate Real-Time Laser Spot Locating Based on Template Correlation in Intersatellite Laser Communications
Author Full Names:Meng, Xiangsheng; Liu, Wen; Han, Junfeng; Tian, Yan; Liu, Jun; Ma, CaiwenSource Title:IEEE PHOTONICS JOURNALLanguage:EnglishDocument Type:ArticleAbstract:In intersatellite laser communications, the centroiding accuracy of a laser spot is crucial for maintaining steady communication links. However, the systematic error introduced by discrete sampling restricts further improvement of centroiding accuracy when choosing algorithms that are widely used in engineering. Additionally, the ultrahigh computational complexity and multiple-step iterations of the Gaussian fitting (GF) algorithm are unsuitable for real-time implementation, even though the algorithm can achieve the highest centroiding accuracy. In this study, we propose a laser spot centroiding algorithm based on template correlation to simultaneously satisfy the requirements of real-time performance and accuracy. The proposed algorithm evaluates the central location of a laser spot by obtaining the index of the maximum Pearson correlation coefficient (PCC). Simulations performed under different conditions reveal that the proposed algorithm is robust against the interference of background noise and the bad pixels. Moreover, experimental verification is performed based on the implementation on a Field-Programmable Gate Array (FPGA) in real-time, meanwhile its accuracy is on the same level as that of the GF algorithm and better than those of other widely-used algorithms. Therefore, the proposed algorithm is suitable for accurate real-time locating of laser spots in engineering applications of the intersatellite laser communications.Addresses:[Meng, Xiangsheng; Liu, Wen; Han, Junfeng; Tian, Yan; Liu, Jun; Ma, Caiwen] Chinese Acad Sci, Xian Inst Opt & Precis Mech, Key Lab Space Precis Measurement Technol, Xian 710119, Peoples R China; [Meng, Xiangsheng; Liu, Wen; Han, Junfeng; Tian, Yan; Liu, Jun; Ma, Caiwen] Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaAffiliations:Chinese Academy of Sciences; Xi'an Institute of Optics & Precision Mechanics, CAS; Chinese Academy of Sciences; University of Chinese Academy of Sciences, CASPublication Year:2024Volume:16Issue:1Article Number:7800209DOI Link:http://dx.doi.org/10.1109/JPHOT.2023.3335234数据库ID(收录号):WOS:001133518800010