2022

2022

  • Record 469 of

    Title:The Earth 2.0 Space Mission for Detecting Earth-like Planets around Solar Type Stars
    Author(s):Ge, Jian(1); Zhang, Hui(1); Deng, Hongping(1); Zhang, Yongshuai(1); Li, Yan(1); Zhou, Dan(1); Tang, Zhenghong(1); Zhang, Congcong(1); Wang, Chaoyan(1); Yu, Yong(1); Yao, Xinyu(1); Zhu, Jiapeng(1); Fang, Tong(2); Chen, Wen(2); Chen, Kun(2); Han, Xingbo(2); Yang, Yingquan(2); Bi, Xingzi(2); Zhang, Kuoxiang(2); Chen, Yonghe(3); Liu, Xiaohua(3); Yin, Dayi(3); Zhang, Quan(3); Yang, Baoyu(3); Wei, Chuanxin(3); Zhu, Yuji(3); Song, Zongxi(4); Gao, Wei(4); Li, Wei(4); Wang, Fengtao(4); Cheng, Pengfei(4); Shen, Chao(4); Pan, Yue(4); Zhang, Hongfei(5); Wang, Jian(5); Wang, Hui(5); Chen, Cheng(5); Zhang, Jun(5); Wang, Zhiyue(5); Zang, Weicheng(6); Mao, Shude(6); Zhu, Wei(6); Wang, Sharon Xuesong(6); Xie, Jiwei(7); Liu, Huigen(7); Zhou, Jilin(7); Yang, Ming(7); Jiang, Chaofeng(7); Chen, Dichang(7); Tang, Wei(7); Sun, Mengfei(7); Wang, Mutian(7); Li, Yudong(8); Wen, Lin(8); Feng, Jie(8); Willis, Kevin(9); Huang, Chelsea(10); Ma, Bo(11); Wang, Yonghao(11); Shen, Rongfeng(11); Tam, Pak-Hin Thomas(11); Hu, Zhecheng(11); Yang, Yanlv(11); Feng, Fabo(11,12); Xiang, Maosheng(13,15); Yu, Jie(14); Zhang, Jinghua(15); Wu, Yaqian(15); Zong, Weikai(16); Yuan, Haibo(16); Li, Tanda(16); Zhao, Yinan(17); Zou, Yuanchuan(18); Liu, Beibei(18,19); Yang, Jun(20); Ye, Quanzhi(21); Yin, Qing-Zhu(22)
    Source: Proceedings of SPIE - The International Society for Optical Engineering  Volume: 12180  Issue:   DOI: 10.1117/12.2630656  Published: 2022  
    Abstract:A space mission called "Earth 2.0 (ET)" is being developed in China to address a few of fundamental questions in the exoplanet field: How frequently habitable Earth-like planets orbit solar type stars (Earth 2.0s)? How do terrestrial planets form and evolve? Where did floating planets come from? ET consists of six 30 cm diameter transit telescope systems with each field of view of 500 square degrees and one 35 cm diameter microlensing telescope with a field of view of 4 square degrees. The ET transit mode will monitor ~1.2M FGKM dwarfs in the original Kepler field and its neighboring fields continuously for four years while the microlensing mode monitors over 30M I © 2022 SPIE.
    Accession Number: 20230413449797
  • Record 470 of

    Title:Coastline Recognition Algorithm Based on Multi-Feature Network Fusion of Multi-Spectral Remote Sensing Images
    Author(s):Qiu, Shi(1); Ye, Huping(2,3); Liao, Xiaohan(2,3,4)
    Source: Remote Sensing  Volume: 14  Issue: 23  DOI: 10.3390/rs14235931  Published: December 2022  
    Abstract:Remote sensing images can obtain broad geomorphic features and provide a strong basis for analysis and decision making. As 71% of the earth is covered by water, shipping has become an efficient means of international trade and transportation, and the development level of coastal cities will directly reflect the development level of a country. The coastline is the boundary line between seawater and land, so it is of great significance to accurately identify it to assist shipping traffic and docking, and this identification will also play a certain auxiliary role in environmental analysis. Currently, the main problems of coastline recognition conducted by remote sensing images include: (1) in the process of remote sensing, image transmission inevitably brings noise causing poor image quality and difficult image quality enhancement; (2) s single scale does not allow for the identification of coastlines at different scales; and (3) features are under-utilized, false detection is high and intuitive measurement is difficult. To address these issues, we used the following multispectral methods: (1) a PCA-based image enhancement algorithm was proposed to improve image quality; (2) a dual attention network and HRnet network were proposed to extract suspected coastlines from different levels; and (3) a decision set fusion approach was proposed to transform the coastline identification problem into a probabilistic problem for coastline extraction. Finally, we constructed a coastline straightening model to visualize and analyze the recognition effect. Experiments showed that the algorithm has an AOM greater than 0.88 and can achieve coastline extraction. © 2022 by the authors.
    Accession Number: 20225013248952
  • Record 471 of

    Title:The Plastic Scintillator Detector of the HERD space mission
    Author(s):Kyratzis, D.(1,2); Alemanno, F.(1,2); Altomare, C.(3,4); Barbato, F.C.T.(1,2); Bernardini, P.(5,6); Cattaneo, P.W.(7); De Mitri, I.(1,2); de Palma, F.(5,6); Di Venere, L.(3,4); Di Santo, M.(1,2); Fusco, P.(3,4); Gargano, F.(4); Loparco, F.(3,4); Loporchio, S.(4); Marsella, G.(8); Mazziotta, M.N.(4); Pantaleo, F.R.(3,4); Parenti, A.(1,2); Pillera, R.(3,4); Rappoldi, A.(7); Raselli, G.(7); Rossella, M.(7); Serini, D.(4); Silveri, L.(1,2); Surdo, A.(6); Wu, L.(1,2); Adriani, O.(34); Aloisio, R.(35,36); Ambrosi, G.(40); An, Q.(18); Antonelli, M.(51); Azzarello, P.(43); Bai, L.(16); Bai, Y.L.(11); Bao, T.W.(9); Barbanera, M.(40); Berti, E.(34); Bertucci, B.(41); Bi, X.J.(9); Bigongiari, G.(42); Bongi, M.(34); Bonvicini, V.(51); Bordas, P.(46); Bosch-Ramon, V.(46); Bottai, S.(33); Brogi, P.(42); Cadoux, F.(43); Campana, D.(38); Cao, W.W.(11); Cao, Z.(9); Casaus, J.(45); Catanzani, E.(41); Chang, J.(17,21); Chang, Y.H.(29); Chen, G.M.(9); Chen, Y.(23); Cianetti, F.(41); Comerma, A.(46,47); Cortis, D.(37); Cui, X.H.(21); Cui, X.Z.(9); Dai, C.(13); Dai, Z.G.(23); D'Alessandro, R.(34); De Gaetano, S.(32); Di Felice, V.(56); Di Giovanni, A.(35,36); Dong, J.N.(14,15); Dong, Y.W.(9); Donvito, G.(31); Duranti, M.(40); D'Urso, D.(55); Evoli, C.(35,36); Fang, K.(9); Fariña, L.(48); Favre, Y.(43); Feng, C.Q.(18); Feng, H.(24); Feng, H.B.(13); Feng, Z.K.(13); Finetti, N.(30); Formato, V.(56); Frieden, J.M.(50); Gao, J.R.(11); Gascon-Fora, D.(46); Gasparrini, D.(56); Giglietto, N.(32); Giovacchini, F.(45); Gomez, S.(46); Gong, K.(9); Gou, Q.B.(9); Guida, R.(52); Guo, D.Y.(9); Guo, J.H.(17); Guo, Y.Q.(9); He, H.H.(9); Hu, H.B.(9); Hu, J.Y.(9,10); Hu, P.(9,10); Hu, Y.M.(17); Huang, G.S.(18); Huang, J.(9); Huang, W.H.(14,15); Huang, X.T.(14,15); Huang, Y.B.(13); Huang, Y.F.(23); Ionica, M.(40); Jouvin, L.(48); Kotenko, A.(43); La Marra, D.(43); Li, M.J.(14,15); Li, Q.Y.(14,15); Li, R.(11); Li, S.L.(9,10); Li, T.(14,15); Li, X.(17); Li, Z.(25); Li, Z.H.(9,10); Liang, E.W.(13); Liang, M.J.(9,10); Liao, C.L.(16); Licciulli, F.(31); Lin, S.J.(9); Liu, D.(14,15); Liu, H.B.(13); Liu, H.(16); Liu, J.B.(18); Liu, S.B.(18); Liu, X.(9,10); Liu, X.W.(13); Liu, Y.Q.(9); Lu, X.(13); Lyu, J.G.(12); Lyu, L.W.(11); Maestro, P.(42); Mancini, E.(40); Manera, R.(46); Marin, J.(45); Marrocchesi, P.S.(42); Martinez, G.(45); Martinez, M.(48); Marzullo, D.(53); Mauricio, J.(46); Mocchiutti, E.(51); Morettini, G.(41); Mori, N.(33); Mussolin, L.(41); Oliva, A.(57); Orlandi, D.(37); Osteria, G.(38); Pacini, L.(33); Panico, B.(38); Papa, S.(52); Papini, P.(33); Paredes, J.M.(46); Pauluzzi, M.(41); Pearce, M.(49); Peng, W.X.(9); Perfetto, F.(38); Perrina, C.(50); Perrotta, G.(52); Pizzolotto, C.(51); Qiao, R.(9); Qin, J.J.(11)
    Source: Proceedings of Science  Volume: 395  Issue:   DOI:   Published: March 18, 2022  
    Abstract:The High Energy cosmic-Radiation (HERD) detector is one of the prominent space-borne instruments to be installed on-board the Chinese Space Station (CSS), around 2027. Primary scientific goals regarding this initiative include: precise measurements of cosmic ray (CR) energy spectra and mass composition, at energies up to the PeV range; contributions to high energy gamma-ray astronomy and transient studies; as well as indirect searches for Dark Matter (DM) particles via their possible annihilation/decay to detectable products. HERD is configured to accept incident particles from both its top and four lateral sides. Owing to its pioneering design, an order of magnitude increase in acceptance is foreseen, with respect to previous and ongoing experiments. The Plastic Scintillator Detector (PSD) constitutes an important sub-detector of HERD, particularly aimed towards anti-coincidence (discriminating incident photons from charged particles), while providing precise charge measurement of incoming cosmic-ray nuclei in a range of Z = 1-26. Main requirements concerning its design, include: high detection efficiency, broad dynamic range and good energy resolution. In order to select the optimal layout, two geometries are currently under investigation: one based on long scintillator bars and the other on square tiles, with both layouts being readout by Silicon Photomultipliers (SiPMs). Ongoing activities and future plans regarding the HERD PSD will be presented in this work. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)
    Accession Number: 20225113256982
  • Record 472 of

    Title:Pencil-beam scanning catheter for intracoronary optical coherence tomography
    Author(s):Kang, Jiqiang(1); Zhu, Rui(2,3,4); Sun, Yunxu(1); Li, Jianan(3,4); Wong, Kenneth K. Y.(5,6)
    Source: Opto-Electronic Advances  Volume: 5  Issue: 3  DOI: 10.29026/oea.2022.200050  Published: 2022  
    Abstract:Current gradient-index (GRIN) lens based proximal-driven intracoronary optical coherence tomography (ICOCT) probes consist of a spacer and a GRIN lens with large gradient constant. This design provides great flexibility to control beam profiles, but the spacer length should be well controlled to obtain desired beam profiles and thus it sets an obstacle in mass catheter fabrication. Besides, although GRIN lens with large gradient constant can provide tight focus spot, it has short depth of focus and fast-expanded beam which leads to poor lateral resolution for deep tissue. In this paper, a type of spacer-removed probe is demonstrated with a small gradient constant GRIN lens. This design simplifies the fabrication process and is suitable for mass production. The output beam of the catheter is a narrow nearly collimated light beam, referred to as pencil beam here. The full width at half maximum beam size varies from 35.1 μm to 75.3 μm in air over 3-mm range. Probe design principles are elaborated with probe/catheter fabrication and performance test. The in vivo imaging of the catheter was verified by a clinical ICOCT system. Those results prove that this novel pencil-beam scanning catheter is potentially a good choice for ICOCT systems. © The Author(s) 2022.
    Accession Number: 20221511951912
  • Record 473 of

    Title:Gamma-ray performance study of the HERD payload
    Author(s):Adriani, O.(26); Alemanno, F.(27,28); Aloisio, R.(27,28); Altomare, C.(23); Ambrosi, G.(35); An, Q.(10); Antonelli, M.(46); Azzarello, P.(38); Bai, L.(8); Bai, Y.L.(3); Bao, T.W.(1); Barbanera, M.(35); Barbato, F.C.T.(27,28); Bernardini, P.(31); Berti, E.(26); Bertucci, B.(36); Bi, X.J.(1); Bigongiari, G.(37); Bongi, M.(26); Bonvicini, V.(46); Bordas, P.(41); Bosch-Ramon, V.(41); Bottai, S.(25); Brogi, P.(37); Cadoux, F.(38); Campana, D.(32); Cao, W.W.(3); Cao, Z.(1); Casaus, J.(40); Catanzani, E.(36); Cattaneo, P.W.(34); Chang, J.(9,13); Chang, Y.H.(21); Chen, G.M.(1); Chen, Y.(15); Cianetti, F.(36); Comerma, A.(41,42); Cortis, D.(29); Cui, X.H.(13); Cui, X.Z.(1); Dai, C.(5); Dai, Z.G.(15); D'Alessandro, R.(26); De Gaetano, S.(24); De Mitri, I.(27,28); de Palma, F.(31); Di Felice, V.(51); Di Giovanni, A.(27,28); Di Santo, M.(27,28); Di Venere, L.(24); Dong, J.N.(6,7); Dong, Y.W.(1); Donvito, G.(23); Duranti, M.(35); D'Urso, D.(50); Evoli, C.(27,28); Fang, K.(1); Fariña, L.(43); Favre, Y.(38); Feng, C.Q.(10); Feng, H.(16); Feng, H.B.(5); Feng, Z.K.(5); Finetti, N.(22); Formato, V.(51); Frieden, J.M.(45); Fusco, P.(24); Gao, J.R.(3); Gargano, F.(23); Gascon-Fora, D.(41); Gasparrini, D.(51); Giglietto, N.(24); Giovacchini, F.(40); Gomez, S.(41); Gong, K.(1); Gou, Q.B.(1); Guida, R.(47); Guo, D.Y.(1); Guo, J.H.(9); Guo, Y.Q.(1); He, H.H.(1); Hu, H.B.(1); Hu, J.Y.(1,2); Hu, P.(1,2); Hu, Y.M.(9); Huang, G.S.(10); Huang, J.(1); Huang, W.H.(6,7); Huang, X.T.(6,7); Huang, Y.B.(5); Huang, Y.F.(15); Ionica, M.(35); Jouvin, L.(43); Kotenko, A.(38); Kyratzis, D.(27,28); La Marra, D.(38); Li, M.J.(6,7); Li, Q.Y.(6,7); Li, R.(3); Li, S.L.(1,2); Li, T.(6,7); Li, X.(9); Li, Z.(17); Li, Z.H.(1,2); Liang, E.W.(5); Liang, M.J.(1,2); Liao, C.L.(8); Licciulli, F.(23); Lin, S.J.(1); Liu, D.(6,7); Liu, H.B.(5); Liu, H.(8); Liu, J.B.(10); Liu, S.B.(10); Liu, X.(1,2); Liu, X.W.(5); Liu, Y.Q.(1); Loparco, F.(24); Loporchio, S.(23); Lu, X.(5); Lyu, J.G.(4); Lyu, L.W.(3); Maestro, P.(37); Mancini, E.(35); Manera, R.(41); Marin, J.(40); Marrocchesi, P.S.(37); Marsella, G.(54,55); Martinez, G.(40); Martinez, M.(43); Marzullo, D.(48); Mauricio, J.(41); Mocchiutti, E.(46); Morettini, G.(36); Mori, N.(25); Mussolin, L.(36); Nicola Mazziotta, M.(23); Oliva, A.(52); Orlandi, D.(29); Osteria, G.(32); Pacini, L.(25); Panico, B.(32); Pantaleo, F.R.(24); Papa, S.(47); Papini, P.(25); Paredes, J.M.(41); Parenti, A.(27,28); Pauluzzi, M.(36); Pearce, M.(44); Peng, W.X.(1); Perfetto, F.(32); Perrina, C.(45); Perrotta, G.(47); Pillera, R.(24); Pizzolotto, C.(46); Qiao, R.(1); Qin, J.J.(3); Quadrani, L.(52,53); Quan, Z.(1); Rappoldi, A.(34); Raselli, G.(34); Ren, X.X.(6,7); Renno, F.(47); Ribo, M.(41)
    Source: Proceedings of Science  Volume: 395  Issue:   DOI:   Published: March 18, 2022  
    Abstract:The High Energy cosmic-Radiation Detection (HERD) facility has been proposed as a space astronomy payload onboard the future China's Space Station. HERD is planned for operation starting around 2027 for about 10 years In addition to the unprecedented sensitivity for dark matter searches and cosmic-ray measurements up to the knee energy, it should perform gamma-ray monitoring and full sky survey from few hundred MeV up to tens of TeV. We present the first study of the HERD gamma-ray performance obtained with full simulations of the whole detector geometry. HERD will be a cubic detector composed with 5 active faces. We present a study conducted inside the HERD analysis software package, which includes a detailed description of the detector materials. In this work we present the HERD effective area, the point spread function and the resulting gamma-ray sensitivity. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)
    Accession Number: 20230113326372
  • Record 474 of

    Title:Automatic Laboratory Martian Rock and Mineral Classification Using Highly-Discriminative Representation Derived from Spectral Signatures
    Author(s):Yang, Juntao(1,2,3); Kang, Zhizhong(2,3,4); Yang, Ze(2,3,4); Xie, Juan(2,3,4); Xue, Bin(5); Yang, Jianfeng(5); Tao, Jinyou(5)
    Source: Remote Sensing  Volume: 14  Issue: 20  DOI: 10.3390/rs14205070  Published: October 2022  
    Abstract:The optical properties of rocks and minerals provide a reliable way to measure their chemical and mineralogical composition due to the specific reflection behaviors, which is also the key insight behind most automatic identification and classification approaches. However, the inter-category spectral similarity poses a great challenge to the automatic identification and classification tasks because of the diversity of rocks and minerals. Therefore, this paper develops a recognition and classification approach of rocks and minerals using the highly discriminative representation derived from their raw spectral signatures. More specifically, a transformer-based classification approach integrated with category-aware contrastive learning is constructed and trained in an end-to-end manner, which would force instances of the same category to remain close-by while pushing instances of a dissimilar category far apart in the high-dimensional feature space, in order to produce the highly discriminative feature representation of the rocks and minerals. From both qualitative and quantitative views, experiments are conducted on the laboratory sample dataset with 30 types of rocks and minerals shared from the National Mineral Rock and Fossil Specimens Resource Center, and the spectral information of the laboratory rocks and minerals is captured using a multi-spectral sensor, with a duplicated payload of the counterpart onboard the Zhurong rover. Quantitative results demonstrate that the developed approach can effectively distinguish 30 types of rocks and minerals, with a high overall accuracy of 96.92%. Furthermore, the developed approach is remarkably superior to other existing methods, with average differences of 4.75% in the overall accuracy. Furthermore, we also visualized the derived highly discriminative features of different types of rocks and minerals by projecting them onto a two-dimensional map, where the same categories tend to be modeled by nearby locations and the dissimilar categories by distant locations with high probability. It can be observed that, compared with those in the raw spectral feature space, the clusters are formed better in the derived highly discriminative feature space, which further confirms the promising representation capability. © 2022 by the authors.
    Accession Number: 20224413049651
  • Record 475 of

    Title:Dynamics of frustrated tunneling ionization driven by inhomogeneous laser fields
    Author(s):Xu, Jingkun(1); Zhou, Yueming(1); Li, Yingbin(2); Liu, Aihua(3,7); Chen, Yongkun(1); Ma, Xiaomeng(4,5); Huang, Xiang(1); Liu, Kunlong(1); Zhang, Qingbin(1); Li, Min(1); Yu, Benhai(2); Lu, Peixiang(1,6)
    Source: New Journal of Physics  Volume: 24  Issue: 12  DOI: 10.1088/1367-2630/acadfe  Published: December 1, 2022  
    Abstract:We theoretically investigated frustrated tunneling ionization (FTI) driven by spatially inhomogeneous strong laser fields induced by surface plasmon resonance within a bow-tie metal nanostructure. The results show that the FTI probability and the principal quantum number distribution exhibit similar oscillatory behavior as a function of the pulse duration. Our analysis reveals that the periodic defocusing and refocusing of the electron spatial distribution due to the inhomogeneous laser field is responsible for the oscillatory structures. In addition, the initial tunneling coordinates and the angular momentum distributions of the FTI events and theirs pulse duration dependence are also explored. Moreover, our results show that the frequency of the oscillatory structures depends sensitively on the electron quiver amplitude and the inhomogeneity strength. Thus, the electron quiver amplitude and the size of the gap between bow-tie nanostructure are useful and efficient knobs for controlling the yield and properties of exited Rydberg states. © 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft.
    Accession Number: 20230213381505
  • Record 476 of

    Title:The High Energy cosmic-Radiation Detector (HERD) Trigger System
    Author(s):Velasco, M.A.(1,45); Bao, T.(2); Berti, E.(3); Bonvicini, V.(4); Casaus, J.(1); Giovacchini, F.(1); Liu, X.(2); Marco, R.(1); Marín, J.(1); Martínez, G.(1); Mori, N.(3); Oliva, A.(5); Pacini, L.(3); Quan, Z.(2); Tang, Z.(2); Xu, M.(2); Zampa, G.(4); Zampa, N.(4); Adriani, O.(31); Alemanno, F.(32,33); Aloisio, R.(32,33); Altomare, C.(28); Ambrosi, G.(40); An, Q.(15); Antonelli, M.(51); Azzarello, P.(43); Bai, L.(13); Bai, Y.L.(8); Bao, T.W.(6); Barbanera, M.(40); Barbato, F.C.T.(32,33); Bernardini, P.(36); Bertucci, B.(41); Bi, X.J.(6); Bigongiari, G.(42); Bongi, M.(31); Bordas, P.(46); Bosch-Ramon, V.(46); Bottai, S.(30); Brogi, P.(42); Cadoux, F.(43); Campana, D.(37); Cao, W.W.(8); Cao, Z.(6); Catanzani, E.(41); Cattaneo, P.W.(39); Chang, J.(14,18); Chang, Y.H.(26); Chen, G.M.(6); Chen, Y.(20); Cianetti, F.(41); Comerma, A.(46,47); Cortis, D.(34); Cui, X.H.(18); Cui, X.Z.(6); Dai, C.(10); Dai, Z.G.(20); D'Alessandro, R.(31); De Gaetanoe, S.(29); De Mitri, I.(32,33); de Palma, F.(36); Di Felice, V.(56); Di Giovanni, A.(32,33); Di Santo, M.(32,33); Di Venere, L.(29); Dong, J.N.(11,12); Dong, Y.W.(6); Donvito, G.(28); Duranti, M.(40); D'Urso, D.(55); Evoli, C.(32,33); Fang, K.(6); Fariña, L.(48); Favre, Y.(43); Feng, C.Q.(15); Feng, H.(21); Feng, H.B.(10); Feng, Z.K.(10); Finetti, N.(27); Formato, V.(56); Frieden, J.M.(50); Fusco, P.(29); Gao, J.R.(8); Gargano, F.(28); Gascon-Fora, D.(46); Gasparrini, D.(56); Giglietto, N.(29); Gomez, S.(46); Gong, K.(6); Gou, Q.B.(6); Guida, R.(52); Guo, D.Y.(6); Guo, J.H.(14); Guo, Y.Q.(6); He, H.H.(6); Hu, H.B.(6); Hu, J.Y.(6,7); Hu, P.(6,7); Hu, Y.M.(14); Huang, G.S.(15); Huang, J.(6); Huang, W.H.(11,12); Huang, X.T.(11,12); Huang, Y.B.(10); Huang, Y.F.(20); Ionica, M.(40); Jouvin, L.(48); Kotenko, A.(43); Kyratzis, D.(32,33); La Marra, D.(43); Li, M.J.(11,12); Li, Q.Y.(11,12); Li, R.(8); Li, S.L.(6,7); Li, T.(11,12); Li, X.(14); Li, Z.(22); Li, Z.H.(6,7); Liang, E.W.(10); Liang, M.J.(6,7); Liao, C.L.(13); Licciulli, F.(28); Lin, S.J.(6); Liu, D.(11,12); Liu, H.B.(10); Liu, H.(13); Liu, J.B.(15); Liu, S.B.(15); Liu, X.W.(10); Liu, Y.Q.(6); Loparco, F.(29); Loporchio, S.(28); Lu, X.(10); Lyu, J.G.(9); Lyu, L.W.(8); Maestro, P.(42); Mancini, E.(40); Manera, R.(46); Marrocchesi, P.S.(42); Marsella, G.(59,60); Martinez, M.(48); Marzullo, D.(53); Mauricio, J.(46); Mocchiutti, E.(51); Morettini, G.(41); Mussolin, L.(41); Nicola Mazziotta, M.(28); Orlandi, D.(34); Osteria, G.(37); Panico, B.(37); Pantalei, F.R.(29); Papa, S.(52); Papini, P.(30); Paredes, J.M.(46); Parenti, A.(32,33); Pauluzzi, M.(41); Pearce, M.(49); Peng, W.X.(6); Perfetto, F.(37); Perrina, C.(50); Perrotta, G.(52); Pillera, R.(29); Pizzolotto, C.(51); Qiao, R.(6)
    Source: Proceedings of Science  Volume: 395  Issue:   DOI:   Published: March 18, 2022  
    Abstract:The High Energy cosmic-Radiation Detection (HERD) facility is a next generation spaceborne detector to be installed onboard the Chinese Space Station for about 10 years. HERD will address major problems in fundamental physics and astrophysics, providing precise measurements of charged-cosmic rays up to PeV energies, performing indirect searches for dark matter in the electron spectrum up to few tens of TeV and monitoring the gamma-ray skymap for surveys and transient searches. HERD is composed of a 3D imaging calorimeter (CALO) surrounded by a scintillating fiber tracker (FIT), a plastic scintillator detector (PSD) and a silicon charge detector (SCD). In addition, a transition radiation detector (TRD) is placed on a lateral side to provide accurate energy calibration. Based on this innovative design, the effective geometric factor of HERD will be one order of magnitud larger than that of current space-based detectors. The HERD trigger strategy is designed to accomplish the scientific goals of the mission, and is based on trigger definitions that rely on the energy deposited in CALO and the PSD. The trigger performances are evaluated using a detailed Monte Carlo simulation that includes the latest HERD geometry. In addition, alternative trigger definitions based on the event topology can be established thanks to the photodiode readout of CALO crystals. The feasibility of these topological triggers is also investigated and presented. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)
    Accession Number: 20225113275758
  • Record 477 of

    Title:Families of gap solitons and their complexes in media with saturable nonlinearity and fractional diffraction
    Author(s):Zeng, Liangwei(1); Belić, Milivoj R.(2); Mihalache, Dumitru(3); Shi, Jincheng(4); Li, Jiawei(5); Li, Siqi(5); Lu, Xiaowei(1); Cai, Yi(1); Li, Jingzhen(1)
    Source: Nonlinear Dynamics  Volume: 108  Issue: 2  DOI: 10.1007/s11071-022-07291-z  Published: April 2022  
    Abstract:We demonstrate the existence of various types of gap localized modes, including one- and two-dimensional (1D and 2D) single solitons and soliton clusters, as well as the corresponding vortex modes in optical media with saturable Kerr nonlinearity and fractional diffraction. We find that soliton clusters with different number of peaks can be stable in these media. The 1D and 2D localized modes existing at the center of the first and second band gaps are stable, whereas the ones in the peripheries are unstable. In addition, the vortex modes with different number of peaks and vorticity number m= 1 are found to be stable, while the ones with m≥ 2 are unstable. The stability of these localized modes is investigated by using the linear stability analysis and is confirmed by the numerical simulation of their dynamical propagation. The obtained results may enrich the understanding of gap solitons and their complexes in media with saturable nonlinearity and fractional diffraction, and may find potential applications in optical information processing and other related fields. © 2022, The Author(s), under exclusive licence to Springer Nature B.V.
    Accession Number: 20220811691429
  • Record 478 of

    Title:Manipulating Nonsequential Double Ionization of Argon Atoms via Orthogonal Two-Color Field
    Author(s):Li, Yingbin(1); Qin, Lingling(1); Liu, Aihua(2,7); Zhang, Ke(1); Tang, Qingbin(1); Zhai, Chunyang(1); Xu, Jingkun(3); Chen, Shi(4); Yu, Benhai(1); Chen, Jing(5,6)
    Source: Chinese Physics Letters  Volume: 39  Issue: 9  DOI: 10.1088/0256-307X/39/9/093201  Published: August 1, 2022  
    Abstract:Using a three-dimensional classical ensemble model, we investigate the dependence of relative frequency and relative initial phase for nonsequential double ionization (NSDI) of atoms driven by orthogonal two-color (OTC) fields. Our findings reveal that the NSDI probability is clearly dependent on the relative initial phase of OTC fields at different relative frequencies. The inversion analysis results indicate that adjusting the relative frequency of OTC fields helps control returning probability and flight time of the first electron. Furthermore, manipulating the relative frequency at the same relative initial phases can vary the revisit time of the recolliding electron, leading that the emission direction of Ar2+ ions is explicitly dependent on the relative frequency. © 2022 Chinese Physical Society and IOP Publishing Ltd.
    Accession Number: 20223412595705
  • Record 479 of

    Title:Emerging material platforms for integrated microcavity photonics
    Author(s):Liu, Jin(1); Bo, Fang(2); Chang, Lin(3); Dong, Chun-Hua(4); Ou, Xin(5); Regan, Blake(6); Shen, Xiaoqin(7); Song, Qinghai(8); Yao, Baicheng(9); Zhang, Wenfu(10); Zou, Chang-Ling(4); Xiao, Yun-Feng(11)
    Source: Science China: Physics, Mechanics and Astronomy  Volume: 65  Issue: 10  DOI: 10.1007/s11433-022-1957-3  Published: October 2022  
    Abstract:Many breakthroughs in technologies are closely associated with the deep understanding and development of new material platforms. As the main material used in microelectronics, Si also plays a leading role in the development of integrated photonics. The indirect bandgap, absence of χ(2) nonlinearity and the parasitic nonlinear absorptions at the telecom band of Si imposed technological bottlenecks for further improving the performances and expanding the functionalities of Si microcavities in which the circulating light intensity is dramatically amplified. The past two decades have witnessed the burgeoning of the novel material platforms that are compatible with the complementary metal-oxide-semiconductor (COMS) process. In particular, the unprecedented optical properties of the emerging materials in the thin film form have resulted in revolutionary progress in microcavity photonics. In this review article, we summarize the recently developed material platforms for integrated photonics with the focus on chip-scale microcavity devices. The material characteristics, fabrication processes and device applications have been thoroughly discussed for the most widely used new material platforms. We also discuss open challenges and opportunities in microcavity photonics, such as heterogeneous integrated devices, and provide an outlook for the future development of integrated microcavities. © 2022, Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature.
    Accession Number: 20223712723895
  • Record 480 of

    Title:The enhanced X-ray Timing and Polarimetry mission – eXTP: an update on its scientific cases, mission profile and development status
    Author(s):Zhang, Shuang-Nan(1); Santangelo, Andrea(2); Xu, Yupeng(1); Feroci, Marco(3,4); Hernanz, Margarita(5,6); Lu, Fangjun(1); Chen, Yong(1); Feng, Hua(7); Nandra, Kirpal(8); Jiang, Weichun(1); Svoboda, Jiri(9); Brandt, Søren(10); Schanne, Stéphane(11); Zand, Jean(12); Michalska, Malgorzata(13); Bozzo, Enrico(14); Kalemci, Emrah(15); Agudo, Ivan(16); Ahangarianabhari, Mahdi(17); Aitink-Kroes, Gabby(12); Ambrosi, Giovanni(18); Ambrosino, Filippo(3); An, Zhenghua(1); Perez Torres, Miguel Angel(16); Antonelli, Matias(19); Argan, Andrea(3,20); Babinec, Viktor(21); Baldini, Luca(22); Barbera, Marco(23,24); van Baren, Coen(12); Baudin, David(11); Bayer, Jörg(2); Bellazzini, Ronaldo(22); Bellutti, Pierluigi(25); Bertucci, Bruna(26); Bertuccio, Giuseppe(17); Bi, Xingzi(27); Boezio, Mirko(19); Bonvicini, Valter(19); Bonvicini, Walter(19); Bordas, Pol(28); Borghese, Alice(5,6); Borghi, Giacomo(25); Bouyjou, Florent(11); Bozkurt, Ayhan(15); Brez, Alessandro(22); Brienza, Daniele(29); Cadoux, Franck(30); Campana, Riccardo(31); Cao, Jiewei(1); Cao, Xuelei(1); Casares, Jorge(32); Cavazzuti, Elisabetta(29); Ceraudo, Francesco(3); Chen, Tianxiang(1); Chen, Wen(27); Chen, Can(1); Chen, Yupeng(1); Chen, Xin(27); Chen, Yehai(27); Chenevez, Jerome(10); Cheng, Yaodong(1); Cirrincione, Daniela(19,33); Civitani, Marta(34); Cong, Min(1); Zelati, Francesco Coti(5,6); Cui, Weiwei(1); Cui, Tao(1); Cui, Wei(7); Dai, Boyu(1); Dauser, Thomas(35); De Angelis, Nicolas(30); De Marco, Barbara(36); De Rosa, Alessandra(3); Monte, Ettore Del(3,4); Cosimo, Sergio Di(3); Diebold, Sebastian(2); Dilillo, Giuseppe(3); Ding, Fei(37); Dohnal, Roman(21); Dong, Zefang(1); Donnarumma, Immacolata(29); Dovciak, Michal(9); Du, Yuanyuan(1); Ducci, Lorenzo(2); Evangelista, Yuri(3,4); Fan, Qingmei(38); Favre, Yannick(30); Ferrés, Patrícia(5,6); Fiandrini, Emanuele(26); Ficorella, Francesco(25); Fuschino, Fabio(31); Gálvez, José Luis(5,6); Gao, Na(1); Gao, Min(1); Ge, Yuqiang(37); Ge, Mingyu(1); Gevin, Olivier(11); Grassi, Marco(39); Gu, Yudong(1); Gu, Quanying(38); Guan, Ju(1); Guedel, Manuel(40); Han, Xingbo(27); Han, Dawei(1); He, Huilin(1); He, Junwang(27); Hedderman, Paul(2); den Herder, Jan-Willem(12); Hong, Bin(38); Hormaetxe, Ander(5,6); Hou, Dongjie(1); Hu, Zexun(41); Hu, Hao(1); Hu, Qingbao(1); Hu, Yu(1); Huang, Yue(1); Huang, Jiangjiang(27); Huang, Qiushi(42); Huo, Jia(1); Hynek, Richard(21); Iwasawa, Kazumi(28); Izzo, Lucca(16); Ji, Long(43); Jia, Shumei(1); Jiang, Bowen(41); Jiang, Wei(37); Jiang, Jiechen(1); Jiang, Xiaowei(1); Jiao, Yang(1); Jin, Ge(41); Jin, Fan(37); Jose, Jordi(36); Karas, Vladimir(9); Kennedy, Thomas(44); Kirsch, Christian(35); Kole, Merlin(30); Komarek, Martin(21); Kreykenbohm, Ingo(35); Kuiper, Lucien(12); Kuvvetli, Irfan(10); Labanti, Claudio(31); Latronico, Luca(45); Laubert, Phillip(12); Li, Tao(41); Li, Longhui(41); Li, Hong(7); Li, Duo(37)
    Source: Proceedings of SPIE - The International Society for Optical Engineering  Volume: 12181  Issue:   DOI: 10.1117/12.2629340  Published: 2022  
    Abstract:The enhanced X-ray Timing and Polarimetry mission (eXTP) is a flagship observatory for X-ray timing, spectroscopy and polarimetry developed by an International Consortium. Thanks to its very large collecting area, good spectral resolution and unprecedented polarimetry capabilities, eXTP will explore the properties of matter and the propagation of light in the most extreme conditions found in the Universe. eXTP will, in addition, be a powerful X-ray observatory. The mission will continuously monitor the X-ray sky, and will enable multiwavelength and multi-messenger studies. The mission is currently in phase B, which will be completed in the middle of 2022. © 2022 SPIE. All rights reserved.
    Accession Number: 20224413019007